Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 8260, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217573

RESUMO

Understanding the relationship between surface adsorbates and secondary electronic emission is critical for a variety of technologies, since the secondary electrons can have deleterious effects on the operation of devices. The mitigation of such phenomena is desirable. Here, using the collective efforts of first-principles, molecular dynamics, and Monte Carlo simulations, we studied the effects of a variety of carbon adsorbates on the secondary electron emission of Cu (110). It was demonstrated that the adsorption of atomic C and C[Formula: see text] pair layers can both reduce and increase the number of secondary electrons depending on the adsorbate coverage. It was shown that under electron irradiation, the C-Cu bonds can be dissociated and reformed into C[Formula: see text] pairs and graphitic-like layers, in agreement with experimental observation. It was verified that the lowest secondary electron emission was due to the formation of the graphitic-like layer. To understand the physical reason for changes in number of secondary electrons for different systems from an electronic structure perspective, two-dimensional potential energy surfaces and charge density contour plots were calculated and analyzed. It was shown that the changes are strongly influenced by the Cu surface morphology and depends highly on the nature of the interactions between the surface Cu and C atoms.

3.
Sci Rep ; 12(1): 15808, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138077

RESUMO

First-principles calculations coupled with Monte Carlo simulations are used to probe the role of a surface CO monolayer formation on secondary electron emission (SEE) from Cu, Ag, and Au (110) materials. It is shown that formation of such a layer increases the secondary electron emission in all systems. Analysis of calculated total density of states (TDOS) in Cu, Ag, and Au, and partial density of states (PDOS) of C and O confirm the formation of a covalent type bonding between C and O atoms. It is shown that such a bond modifies the TDOS and extended it to lower energies, which is then responsible for an increase in the probability density of secondary electron generation. Furthermore, a reduction in inelastic mean free path is predicted for all systems. Our predicted results for the secondary electron yield (SEY) compare very favorably with experimental data in all three materials, and exhibit increases in SEY. This is seen to occur despite increases in the work function for Cu, Ag, and Au. The present analysis can be extended to other absorbates and gas atoms at the surface, and such analyses will be present elsewhere.

4.
Rev Sci Instrum ; 93(2): 024704, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232123

RESUMO

The search for new technologies aiming to reach radiofrequency (RF) generation in different manners for diverse ends is a constant demand for several applications. The goal is to develop cost-effective and simpler systems compared to those that already exist. Our motivation is to reach an alternative way of generating RF in pulsed transmission systems employing a gyromagnetic nonlinear transmission line (GNLTL). The GNLTL consists of a ferrite-loaded-coaxial transmission line and can produce a large frequency spectrum with RF conversion efficiency above 10% from about 200 MHz up to the frequency of 2-4 GHz (S-band) for potential space-based applications. In a GNLTL, the signal amplitude is related to its propagation velocity since the peak voltage travels faster than its portion of lower amplitudes since the ferrite permeability decreases with the current amplitude. As the pulse crest travels faster than its valley, a time reduction happens in the output rise time, called pulse sharpening. Besides, the magnetic moments of ferrite dipoles initially aligned with the axial magnetic bias are displaced from their original position by the azimuthal field generated around the inner conductor by the current pulse, resulting in a damped precession movement. This movement happens along the line length as the current pulse propagates, inducing high-frequency oscillations. In short, the paper's goal is to present the experimental results using a 60-cm gyromagnetic line to provide RF in the GHz range using a solenoid for magnetic bias on a testing bench. Finally, the paper discusses the influence of the azimuthal and the axial magnetic fields on the output signal with the ferrite rings operating in a saturation state during the current pulse propagation.

5.
Rev Sci Instrum ; 86(8): 085001, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26329223

RESUMO

A comparison study between Y + 36° and 0° X-cut lithium niobate (LiNbO3) was performed to evaluate the influence of crystal cut on the acoustic propagation to realize a piezoelectric high-voltage sensor. The acoustic time-of-flight for each crystal cut was measured when applying direct current (DC), alternating current (AC), and pulsed voltages. Results show that the voltage-induced shift in the acoustic wave propagation time scaled quadratically with voltage for DC and AC voltages applied to X-cut crystals. For the Y + 36° crystal, the voltage-induced shift scales linearly with DC voltages and quadratically with AC voltages. When applying 5 µs voltage pulses to both crystals, the voltage-induced shift scaled linearly with voltage. For the Y + 36° cut, the voltage-induced shift from applying DC voltages ranged from 10 to 54 ps and 35 to 778 ps for AC voltages at 640 V over the frequency range of 100 Hz-100 kHz. Using the same conditions as the Y + 36° cut, the 0° X-cut crystal sensed a shift of 10-273 ps for DC voltages and 189-813 ps for AC voltage application. For 5 µs voltage pulses, the 0° X-cut crystal sensed a voltage induced shift of 0.250-2 ns and the Y + 36°-cut crystal sensed a time shift of 0.115-1.6 ns. This suggests a frequency sensitive response to voltage where the influence of the crystal cut was not a significant contributor under DC, AC, or pulsed voltage conditions. The measured DC data were compared to a 1-D impedance matrix model where the predicted incremental length changed as a function of voltage. When the voltage source error was eliminated through physical modeling from the uncertainty budget, the combined uncertainty of the sensor (within a 95% confidence interval) decreased to 0.0033% using a Y + 36°-cut crystal and 0.0032% using an X-cut crystal for all the voltage conditions used in this experiment.

6.
Artigo em Inglês | MEDLINE | ID: mdl-11089135

RESUMO

Single microwave pulses centered at 9.68 GHz with 100-MHz (full width at half maximum) bandwidth are used to evanescently tunnel through a one-dimensional photonic crystal. In a direct time-domain measurement, it is observed that the peak of the tunneling wave packets arrives (440+/-20) ps earlier than the companion free space (air) wave packets. Despite this superluminal behavior, Einstein causality is not violated since the earliest parts of the signal, also known as the Sommerfeld forerunner, remain exactly luminal. The frequency of oscillations and the functional form of the Sommerfeld forerunner for any causal medium are derived.

7.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...